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The effect of the presence of a catheter upon the pressure distribution inside 
the ureter is considered. Under the assumption of Stokes flow and long wave- 
lengths it is shown that during the contraction a thin lubrication-type layer is 
formed between the catheter and the ureteral wall, capable of sustaining high 
pressures. Furthermore, it is found that the insertion of a catheter does not 
change the pressure distribution inside the ureter appreciably, leading to the 
conclusion that a urometrogram obtained with a catheter gives a good representa- 
tion of the pressure inside an undisturbed ureter. 

1. Introduction 
The pressure distribution inside the ureter, measured as a function of time 

(the urometrogram), is one of the important diagnostic tools in urology. Such 
pressure measurements are obtained through insertion of ti catheter inside the 
ureter. Many physiologists have wondered about the effect of this catheter on 
the pressure distribution and have asked themselves whether the observed 
urometrogram is a fair representation of the pressure distribution in an un- 
disturbed ureter. Some have gone as far as to question the validity of their 
measurements. 1 

Recently, Lykoudis & Roos (1970) theoretically analyzed the fluid mechanics 
of the ureter, putting special emphasis on the urometrogram.5 They showed that 
the ureter has to collapse to very small diameters, of the order of 0*05rnm, in 
order to produce pressures of 25 mmHg, which is the level normally observed. 
On the other hand, the catheters used to measure these pressures have diameters 
of the order of 1 mm. They interpreted this apparent inconsistency by postulating 
the existence of a thin layer of fluid between the wall of the ureter and the 
catheter capable of sustaining the observed high pressures. This lubrication film 
would behave similarly to the ones in load-carrying bearings. 

In  order to provide a better understanding of this problem, we will investigate 
the case of a peristaltic wave moving over a stationary cylinder. The cylinder 
is assumed to be infinitely long, excluding the influence of the tip of the catheter. 
This is not regarded a.s a major limitition since ureteral catheters have side 

t Present address : National Aerospace Laboratory NLR, Amsterdam, The Netherlands. 
$ See, for example, the discussion in Boyarsky (1970). 
3 See also Roos (1970). 
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openings, in contrast to heart cathetzrs which have an open end. The shape of the 
wave is taken to be similar to the one used by Lykoudis & Roos (1970) in their 
analysis of the ureter. 

2. Mathematical formulation 
Let us assume an infinitely long cylinder of radius 8 inside a peristalting tube 

ofwhich, in a co-ordinate system moving with the wave at  speed c,  the collapsing 
part is given by (see figure 1) 

(1) 

where b > 6 and A, 9 u+ b. The relaxation part is approximated by a step func- 
tion, although of course in reality a smooth relaxation is required. The relaxed 
section is taken to be a straight tube. 

h = b + u(x/A1)rn, 

I I 

FIGURE 1. Co-ordinate system and geometry. 

Since the Reynolds number for the type of flow in the ureter is of order 1 or 
smaller, one can neglect the inertia terms in the equations of conservation of 
momentum. Realizing further that the wavelength is much larger than the 
average diameter, the equations governing this problem in the moving co- 
ordinate system are the continuity equation 

and the equations of conservation of momentum 

appr N 0 or p =p(x). 

In  this co-ordinate system the boundary conditions are 

u = - c  at r = 8 ,  

u. = --e at r = h(x), 

v = O  at r = S .  

(3) 

(4) 
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Since the pressure is a function of x only, (3) can be integrated immediately using 
the boundary conditions ( 5 )  and (6). This leads to an axial velocity distribution 
of the following form: 

In the above equation, which is similar to the one for the flow through an annulus, 
the local pressure gradient is still an unknown quantity. Following the method 
used in lubrication theories (Schlichting 1960), this pressure gradient can be 
expressed in terms of the flux q, which is given by 

q = 2rr urdr.  Lh 
Substitution of (8) and integration results in a pressure gradient 

(9) 

By integrating (lo), one obtains the pressure distribution along the x axis 

ax ax 1: (h2 + S2) - (h2 - S2)/ln (h/S) 4- S4) - (h2 - S2)2/ln (h/6) * Pz = Po - 8PC 

The unknown flux q is found by setting a condition on this pressure distribution. 
In accordance with urological observations, it is assumed that there does not 
exist an overall pressure gradient over one wavelength for the normal ureter or 

However, the diameter of the relaxed part of the wave is large compared to that 
of the collapsed section. Therefore the pressure-drop along this relaxed part is 
negligibIy small and Condition (12) can be substituted by 

(13) APA, = PAl -Po = 0. 

With this condition, the following expression for q is obtained: 

ax A, ax ’ = --7Tc ( JoA’(h2 + S2) - (h2 - d2)/ln (h/6)) / (10 ( h4 - S4) - (h2 - S2)2/1n (h/S) 
(14) 

In  contrast to the case without the inserted cylinder, algebraic solutions of the 
above integrals and thus of the pressure distribution are not readily obtainable. 
For this reason, they need to be evaluated numerically for each particular case. 

3. Numerical pressure and velocity distributions 
Ureteral pressure studies are normally made with catheters ranging in diameter 

from 1-2mm. Our numerical study was performed for the extreme case of 
2 mm (S = 1 mm) such that any effect, if existing and attributed to the inserted 
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cylinder, would become clearly visible. For purposes of comparison, the shape 
of the wave was kept similar to the one used by Lykoudis & Roos (1970). 
Figure 2 shows the obtained numerical pressure distribution, together with an 
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FIGURE 2. Experimental and theoretical urometrograms as obtained from the model with 
inserted catheter. a = 1.35 mm, 6 = 1 mm, b - S = 0.0195 mm, c = 30 mmlsec, A, = 225 
mm, n = 4:  ~ , present theory; - - -, experiment (Kiil 1957, p. 59). 
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FIGURE 3. Experimental and theoretical iirometrograms as obtained from the model 
by Lykoudis & Roos (1970). a = 2.35 111111, b = 0.02 111111, c = 30 mmlsec, A, = 250 mm, 
n = 4 : -  , theory; -.- , experiment (Kiil 1957, p. 59). 
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experimental urometrogram taken from Kiil(l957). It is seen that they coincide 
very well except for the tail, which section is not very well covered by the theory. 

Figure 3, which is taken from Lykoudis & Roos (1970), shows the pressure 
distribution obtained from the theory without the inserted cylinder and the 
same experimental urometrogram. Comparison of these figures shows that both 
theoretical pressure distributions are very similar. The wave speed, the maximal 
diameter, and the shape parameter n are identical in both cases, while the 
contraction length A, differs only by a small amount. The minimal clearance 

c 
I 

I Station at which the pressure 
is maximal and the velocity is zero 

FIGURE 4. The theoretical axial velocity distribution as obtained from the model with 
inserted catheter. a = 1.35 mm, 8 = 1 mm, b - 6 = 0.0195 mm, G = 30 mm/sec, A, = 225 
mm, n = 4. 

between the wall and the cylinder needed to obtain the required maximum 
pressure is found to be of the same order of magnitude as the minimal radius 
needed in the theory without the inserted cylinder. Both are about 0.02mm. 
This result shows that the interpretation made by Lykoudis & Roos (1970), 
leading to the idea of the thin lubrication-type layer between the ureter wall 
and the catheter during the collapsing phase, is correct. 

The axial velocity distribution is given in figure 4. Just as in the theory for 
the ureter without the inserted catheter, we find that the point of zero axial 
velocity or maximum pressure lies ahead of the point of maximal constriction. 
Comparison with experimental data is impossible, since such measurements 
cannot be made. 

4. Conclusion 
It has been shown that the contraction of a peristaltic wave around a catheter 

results in the forming of a thin lubrication-type layer which can sustain high 
pressures. In the absence of the catheter, the walls of the peristaltic tube collapse 
upon themselves, leaving a very small cylinder of fluid sustaining these high 
pressures. Also, the insertion of a catheter in a peristaltic tube does not produce 
substantial changes in the pressure distribution, although the velocity field will 
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change completely. During a contraction the muscles in the ureteral wall are 
performing work against the rising pressure. This work is limited by the amount 
of stored energy before the contraction. Therefore, in both cases the maximum 
pressure will be about the same, given a similar time rise in pressure. 

From this it can be concluded that the urological pressure measurements 
made with a catheter give a good representation of the pressure distribution in 
the undisturbed ureter as long as the catheter does not block the ureter during 
the relaxation phase. 
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